
f.
•._/c/,/J /

.,/.j / ;/ _C.JtL,

,/j - /_: Crc.._

(NASA-CR-IB7260) TNE reGAl.O: A COMMON lISP

IMPLEMENTATION OF A MESSY GENEFIC ALGORITHM

(Houston Univ.) 52 p CgCL 093
Unc] as

G3161 030_245

3o 9 _'_,-.<---
NgI-i3OB4

mGA 1.0: A Common LISP Implementation

of a Messy Genetic Algorithm

David E. Goldberg
Travis Kerzic

University of Alabama

May 1990

Cooperative Agreement NCC 9-16
Research Activity A1.12

NASA Johnson Space Center

Mission Support Directorate

Mission Planning and Analysis Division

© ©

_ _-.._/!
Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I.C.A .L R.E.P.O.R.T i

i

l

1

]

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC.

u

7

.,=J

toGA 1.0: A Common LISP Implementation
of a Messy Genetic Algorithm

v

Preface

m

w

This research was conducted under the auspices of the Research Institute for

Computing and Information Systems by David E. Goldberg and Travis Kerzic, both

of the Department of Engineering Mechanics at the University of Alabama. Dr.

Terry Feagin, Professor of Computer Science at the University of Houston-Clear

Lake, served as RICIS technical representative for this activity.

Funding3 has been provided by the Mission Planning and Analysis Division

within the Ivlission Support Directorate, NASA/JSC through Cooperative Agreement
NCC 9-16 between NASA Johnson Space Center and the University of

Houston-Clear Lake. The NASA technical monitor for this activity was Robert

Savely, Head, Artificial Intelligence Section, Technology Development and

Applications Branch, Mission Support Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

L _

mGA1.0: A Common LISP Implementation

of a Messy Genetic Algorithm

David E. Goldberg & Travis Kerzic

Department of Engineering Mechanics

University of Alabama

Tuscaloosa, AL 35487

TCGA Report No. 90004

May 1990

v

The Clearinghouse for Genetic Algorithms

Department of Engineering Mechanics

University of Alabama

Tuscaloosa, AL 35487-0278

m

--4

mGAI.O: A Common LISP Implementation of a

Messy Genetic Algorithm

David E. Goldberg & Travis Kerzic

The University of Alabama

Tuscaloosa, AL 35487

1 Introduction

Genetic algorithms (GAs) are search and optimization procedures based on the mechanics

of natural selection and natural genetics (Goldberg, 1989a; ttolland, 1975). As we turn the

- corner on the 1990s, GAs are finding increased application in difficult search, optimization, and

machine learning problems in science and engineering. As more celebrants come to the party_

_ncreasing demands are being placed on algorithm performance, and the remaining challenges

of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the

most difficult of these challenges is the so-called linkage problem. Simply stated, the simple

genetic algorithms most prominent in current practice assume that building blocks--highly

fit combinations of features or alleles--,-are physically compact to prevent their separation by

the action of crossover. When this assumption is met orwhen the problem-coding under

consideration is not deceptive (Goldberg, 1989b, 1989c), simple GAs work quite well; if the

needed linkage is loose and the function-coding is sufficiently difficult, then simple GAs can be

misled toward local optima far away from the best point. Standard suggestions to get around

this difficulty, such as reordering operators, have not worked well in the past, and there are

good theoretical reasons why they may never work well enough to be of timely use.(Goldberg

& Bridges, 1990),

tt is against this backdrop that messy genetic algorithms (raGAs) were developed (Goldberg,

Deb, & Korb, 1990; Goldberg, Korb, & Deb, 1989), Messy GAs overcome the linkage prob-

lem of simple genetic algorithms by combining variable-length strings, gene expression, messy

operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of
difficult deceptive test functions ha,¢eb_een encouraging with the toGA always finding global

optima in a polynomial number of function evaluations. Theoretical and empirical studies are

continuing, and a first version of a messy GA is ready for testing by others. The purpose of

this report is to document a Common LISP implementation called mGA1.0.'and re_ate i_to the

basic principles and opera_,ors developed by Goldberg et al. (1989, 1990).)although the code
%a,-' _ • • ,

has [_ea prepared with care, it Is not a general-purpose code, only a research version..This first

release contains the basic toGA as well as the thresholding mechanism discussed in Goldberg

et al. (t990). It does not contain the tie-breaking mechanism with null bits; this feature will

be released in the first update.

tn the remainder of this report, i.mportant data structures and global variables are described.

Thereafter brief function descriptions are given, and sample input data are presented together

with sample program output. A source listing with comments is also included.

|._

w

1.1 Programming and typing conventions

A number of conventions were adopted in programming mGA1.0, and a number of typing

conventions have been adopted in writing this report.
All reGAl.0 multiple-word user-defined functions and variables use an underscore between

words instead of a hyphen. This makes them easier to distinguish from Common LISP standard

functions. All function names are typed in all capital letters (e.g., 0BJFUNC). All variable names

are typed in all lower-case letters (e.g., bit_specifier).
All references to function or data names within the text are typed using the typeface font

(e.g., ...when the bit_specifier variable changes value...).

2 Data Structures and Global Variables

The processing in any GA may be viewed as a battle between the members of a population of

artificial individuals or organisms set in the context of some environment or objective function.

Thus, at least two types of data structure are necessary for mGA processing: those related to

individuals and populations and those related to the objective function. In the remainder of this

section, population and objective-function data structures and their components are described.

In addition, a number of other global variables are detailed.

2.1 Populations and individuals

The program mGA1.0 uses two nonoverlapping populations newpop and oldpop to coordinate

genetic processing. Each generation, the new population, nevpop, is created by selecting and

perhaps recombining and mutating individuals within the old population, oldpop. Each popu-

lation is a list containing popsize structures of the type population.member. Each individual

(each an instance of the structure type population_member) carries the essential information

about an individual required for genetic and objective-function processing. A schematic of the

population and the information carried by each individual is shown in figure 1. The three

components of the structure type population_member are as follows:

chrom The variable chrom is a list of genes (ordered pairs), where each gene

specifies a gene's name (its number) and its value (a 1 or a 0). For ex-

ample, the chrom ((2 0) (3 0) (1 1)) specifies the three-bit string

001 in the usual fixed-position simple GA. The chrom lists are pro-

cessed by cut, spUce, and mutation operators. Gene redundancies and

missing genes are handled in the decoding process. For example, the

underspecified string in a three-bit problem ((2 l) (3 1)) with an

a/l-zero competitive template would decode to the string 110, because

the zero of the competitive template would fill in the missing position

of the messy string. The overspecified string (in a three-bit problem)
((2 0) (3 1) (1 1) (2 1)) would decode to the string 101, because

the first instance of the second gene governs decoding on a left-to-right

scan. After the decoding process, the objective function calculates a

function value through one or more table look-up subfunctions.

fi_;ness The floating-pointvariablefitness storesthe objectivefunctionvalue

of chrom, reGAl.0 assumes thatfitnessisa functionto be maximized.

l

Population information carried by each population member

array of structures

chrom

((1 O) (0 3) (1 2) (1 5) (0 4) (1 1))

subf_list

(20 30 24 27 19 17 19 21)

Figure 1: A schematic of the population structure shows the array of individuals together with

a sample of the contents of a single individual.

w

t_

m
w

w

subflist The list of floa.ting-point values subf_list stores the individual sub-

function values for the objective function. For example, in a three-

subfunction problem, if subfunction one has value 30, subfunction two

has value 21, and subfunction three has value 22.3, the subf_list would

have value (30 21 22.3). This storage is used for statistical recordkeep-

ing. It is not used to aid in the genetic processing of reGAl.0 (mGA1.0

is a pure blind GA).

2.2 Data structures associated with the objective function

The objective function in mGA1.0 takes the scaled sum of one or more table look-up subfunc-

tions. This choice of objective function was dictated by the need to test the mGA on test

functions that were composed of sums of deceptive functions of different size (order) and scale.

In practical applications, the objective function and its data structures will require modification.
To coordinate the summation of the separate subfunctions, a list bit_spec of structures of

type bit_cluster is used to store the subset of bits to be used, the scale factor, and the look-up

table number in the following three components:

bit_specifier The listofintegersbit_specifier names thegenes (by number) required

by the currentsubfunction.For example, the bit_specifier (1 2 3)

indicatesthat genes i, 2, and 3 are used in that order by the current

subfunction.

scale=factor

table_pecifier

The floating-point variable scale_factor is a scale factor that multiplies

the value of the subfunction found in the look-up table. It may be used to

strengthen or weaken the relative contribution of the current subfunction

to the total objective function value.

The integer value table_specifier specifies the look-up table number

to use when decoding current a subfunction.

The other structures required for objective function processing are the look-up tables them-

selves. The variable lookup_table contains a list of size num_tables where each element spec-

ifies a full n-bit look-up table. The storage format is as follows:

lookup_able The variable lookup_table is a list of lists, where each component list

is a separate table. Each table is itself a list of lists where the separate

entries contain the set of argument bits and their value. For example,

the table entry for the bits 00 with value 5 would be stored as ((0 0) 5).

An entire table with four entries would be written as

(((0 O) 5)((0 1) 7.3)((1 O) 9)((1 I) 12))

where the bit combinations 00 ,01 ,10, and 11 have values 5, 7.3, 9

and 12, respectively. An entire example with two tables is given below:

lookup_table = ((((0 O) 5)((0 I) 7.3)((1 O) 9)((1 I)12))

(((o o) 1)((o 1) 2)((1 o) o)((1 1) s))).

M

W

w

m

Here the first table is the one discussed above, and the second is of the

same size with values 1, 2, 0, and 5. The table look up is done without

regard to the ordering of entries. The look up is performed in a linear

fashion, the first matching entry determining the returned value. If no
match is found the value subfunction is set to 0.

2.3 Global variables and data structures

This subsection presents an alphabetized llst of reGAl.0 global variables and data structures

together with brief descriptions of their purpose. A number of global variables are initialized

during the setup process; detailed input data file description is presented later in this documen-

tation.

avg_=fitness The floating-point variable avg..:fitness contains the average chromo-
some fitness taken across the entire population.

bits_per_chrom The integer variable bits__er_chrom specifies the total number of binary

variables in the current objective function.

bit_spec This variable is a list of structures of type bit_cluster. Each structure

specifies the realationship between sets of bits and look-up tables to

permit objective function evaluation. See section 2.2 for a more detailed

description.

bldg_blk_ize

cookgen

The integer variable bldg_Ik_ize specifies the minimum building block

size to be generated by]O,KE_.g_.POP. It represents the variable k in the

population sizing equation 2k (_).

The integer variable cookgen specifies the number of generations in the

primordial phase (the number of generations to cook the population).

cut_prob The floating-point variable cut..prob specifies the per-bit cut probabil-

ity. This value is multiplied by a string's raw length to determine the

chromosomal cut probability.

cutpopgen During the primordial phase, the population is cut in half every other

generation through generation cutpopgen.

data

first_ime

garbage_collect

The stream data specifies an output file for raw setup and generational

data. The file has a header written at the beginning to specify the order

of written information, and is intended for easy incorporation into a

package with graphing abilities (e.g., MATLAB).

The flag first_time is set to t prior to the first pass through the file

setup routine. Thereafter the flag is nil.

The integer variable garbage_collect specifies the number of generation

between garbage collections. This number depends on the amount of

memory a system has and on the population size.

indata The variableindata isused asan input bufferforthe setup file.

w

B

w

w

init_select _en

instream

lookup_able

loopvar

maxmumgood

maxfi_ness

maxgen

member_copies

minfitness

mu%_prob

newpop

subf_osnnax

nummubfunctions

num_ables

numgood

oldpop

The integer variable inizmelect_gen specifies the number of genera-
tions INIT_SELECTION will be used.

The stream name instream defines the input stream and is used to read

from the setup fiIe.

This variable is a list of look-up tables for objective-function processing.

See section 2.2 for a more detailed description.

The integer variable loopvar is used to count the number of generations.

The integer variable max_numgood is used to keep track of the ma_mum

number of optimum building blocks in any single population member

across the the current population. The optimum value is set by scanning

individuals and the look-up tables in SETUP.SUBFUNC_MAX.

The floating-point variable maxfitness contains the value of the maxi-

mum fitness across the current population.

The integer variable maxgen specifies the total number of generations
that will be executed.

The integer variable member_copies specifies how many copies of each

population member will be made in the MAKE_NEW_POPfunction.

The floating-point variable minfitness contains the value of the mini-

mum fitness value across the current population.

The floating-point variable mu%_prob specifies the probability that a sin-

gle bit will be mutated from a 1 to a 0 or vice versa by the MUTATION

operator

The variable newpop is a llst of structures of type populaZion.member. It

contains the current population which is created from the old population

via mGA operators every generation. See previous description in section
2.1.

The floating point list subf_pos_max contains a list of the maximum

values that each of the subfunctions can obtain. It is used by the function

UPDATE_STATS to count the number of optimal building blocks.

The integer variable num_subfunctions specifies the number of subfunc-

tions in the current objective function.

The integer variable num_tables specifies the total number of look-up
tables.

The integer variable numgood counts the the total number of optimal

building blocks in the population.

The list oldpop of structure type populaZion_member contains the old

population. See previous description in section 2.1.

=4

W

Z

pick

popsize

pspe

screen_file

seed

setup_ile

shuffle

shufnum

splice_rob

stack

sumfitness

thres

vertnum_pot

The integer variable pick is used as a position marker and indexes into

a population selection array shuffle used by the selection routines.

The integer variable popsize specifies the current population size.

The flag pspe is set to t to activate the partial-string-partial-evaluation

mode within mGAI.0. When the flag is true, only fully specified subfunc-

tions will be given a value other than zero. Otherwise, the std_:fill array

(the competitive template) is used to fill the unspecified bit positions so

that underspecified chromosomes can be decoded (see UPDATE_STATS).

The stream name screen&file specifies statistical output that is di-

rected to both the screen and the statistics file.

The floating-point variable seed is used to seed the random number

generator when the program is first initialized.

The character string setup_file specifies the pathname of the setup file.

The integer array shuffle contains a randomly generated permutation

of the numbers ranging from one to popsize.

The integer variable shufnum determines the subpopulation size searched

to try to satisfy the requirement for having the threshold number of bits

in common in the THRESH_SELECTION routine.

The floating-point variable splice_prob specifies the probability that

two chromosome pieces will be spliced together by the SPLICE operator.

The list stack is where CUTAND.STACK places its list of chromosome

pieces (see figure 2).

The file stream name star is used to specify output to the statistics file.

The array of integers std_:fill is used to fill in unspecified positions

during chromosome decoding.

The floating-point variable sumfitness holds the sum of the fitness val-

ues of all members of the current population and is used to calculate the

population average fitness.

The flag thres is set to t to dictate the use of thresholding through the

selection function THBI£H_SELECT.

The integer array vertnum_spot counts the number of optimal building

blocks in each subfunction position across the population.

3 Brief Function Descriptions

This section presents an alphabetized list of brief function descriptions for primary routines

called in the execution of mGAI.O. The functions are placed in seven separate files according

to function: aux.llsp, decode.lisp, mga.lisp, obj func.lisp, ops.lisp, setup, lisp,

i==m

v

m

m

and stats.lisp. The fileaux. lisp contains utilityand auxilliarycode. The filedecode .lisp

contains code responsible for decoding a raw chromosome, thereby generating a processed chro-

mosome. The filemga. lisp contains global variabledeclarations,the mGA function, and impor-

tant phase coordination functions. The fileobjfunc.lisp contains functions related to sub-

function look up, scaling, and summation. The fileops.lisp contains the genetic operators.

The filesetup.lisp contains initializationcode, and the filestats .lisp contains statistical

and reporting code. Each of the functions descriptions is followed by its corresponding file

name.

(CHOOSE nl n2) The function CHOOSE calculates the number of combinations of nl objects

taken n2 at a time. (aux.lisp)

(COMBINATION max_number num_places comb_list) The COMBINATION operator generates the

next combination of max_number things taken num_places at a time in

lexicographical order given the current combination in the list comb_/is t.

(aux. lisp)

(COMPLEMENT_BIT bit) The function COMPLEMENT_BIT changes a bit from a one to a zero or

vice versa. (aux. lisp)

(CROSSOVER matel mate2 cut_prob splice_prob) The function CROSSOVER takes two chro-

mosomes matel and mate2 and specified cut and splice probabilities

cut_prob and splice..probl and returns a list of between one and four

offspring chromosomes through coordinated invocation of the cut and

splice operators. CROSSOVER executes calls to the functions CUT_AND_STACK

and SPLICE_TESTER. (ops.lisp)

(CUT chromosome) A chromosome ispassed to the function CUT, whereupon a random cut

point within the chromosome isselected,the chromosome iscut, and the

two pieces are returned as a list.(ops.lisp)

(CUT_AND_STACK matel mate2 cut_prob) Two chromosomes are passed to the function

CUT_AND_STACK together with theircut probability cut_prob. The pieces

are CUT and the pieces are stacked in an order appropriate for subse-

quent splicing,and the resulting stack of between two and four pieces

is returned. The operation of CUT_AND_STACK is shown in in figure 2.

(ops. lisp)

(DET.SELECTION) This function performs binary tournament selection without replace-

ment. For init_select_gen generations, the function INIT.SELECTION

iscalled.Then, ifthe value ofthe flagthres ist, the thresholding selec-

tion function THRESH_SELECTION iscalled. Otherwise, NORM_SELECTION

performs simple binary tournament selection.(ops.lisp)

(EXTRACT chrom) The raw chromosome chrom ispassed to the function EXTRACT. The chro-

mosome isscanned from leftto right,constructing a processed string us-

ing the firstgene value encountered during the scan. In a five-bitexam-

ple, ifthe chromosome ((I O) (2 i) (5 0)) were passed to EXTRACT,

the returned resultwould be (0 i nil nil 0). (decode.lisp)

(FACTORIAL n) The function (FACTORIAL) in_.plementsa factorialoperator as n!. (aux.lisp)

Arguments m CUT_AND_STACK

s_ings
cut point
!

matel((I0)(I2)(03)(I2)[(I5)(I4))
I

mate2((lI)(03)',(04)(02XI3XI_I 6))

O<=cut..prob<= 1.0

variableSTACK

top ofstack

((i o×1 2Xo 3)(1 2)) J

I((o 4XO2Xl 3)(I5")(06))

((IIXO3))

((I_i 4))

r_t_rncdvalue isa listof thesepieces

Figure 2: CUTAND_STACK detail

--=

w

m

(FILL_NIL_POSITIONS listl) The function FILL.NIL.POSITIONS takes a processed string

listl and fills in any unspecified positions with the corresponding values

in the standard fill array std_fill. For example, the processed string

(0 1 nil nil O) passed to FILL_NIL.POSITIONS with szd_fill=#(O 0

0 0 O) would return the fRied-in string (0 1 0 0 0). (decode.lisp)

(FLIP probability) The function FLIP randomly returns z with the specified probability;

otherwise, itreturns nil. (aux.lisp)

(GET_CHROMOSOME pop loc) The index number and population are passed to GET_CHROMOSOME

and the chromosome of the locth population member from the popula-

tion pop is returned. (aux. lisp)

(GET..FITNESS pop loc) The index number and population are passed to GET..FITNESS and

the population member's fitnessvalue isreturned. (aux. lisp)

(GET_SUBFUNCTION_LIST pop loc) The index number and population are passed to

GET_SUBFUNCTION..LIST, and the member's subfunction listisreturned.

(aux. lisp)

(INIT_SELECTION) The function INIT_SELECTION selects and compares the fitnessvalues

of population members in their original order. This is useful in the

early stages of a run to mMntain tournaments among competing building

blocks without additional thresholding. (ops.lisp)

(INITIAL_0UTPUT) The setup parameters read from the setup fileare displayed through a

callto INITIAL_0UTPUT. (szaZs.lisp)

(JUXTAPOSITIONAL) The processing of the juxtapositiona] phase iscoordinated by a call to

JUXTAPOSITIONAL. (mga. lisp)

(MAKE_NEW_POP num_positions maxlength Roptional copies) A new popu]ation consist-

ing of all possible building blocks of length hum_positions with values

ranging to maxlengZh are created by the function MAKE_NEW_POP. All

(/) building blocks are generated, running through the population so2 k

that competing building blocks are adjacent. (setup. lisp)

(toGA) The toGAfunction coordinates the overall processing of the messy genetic

algorithm. It is responsible for controlling the primordial and juxtapo-

sitional genetic phases as well as cutting the populations size. On start

up, it calls the setup file load routine and executes calls to initialize the

population. (toga. lisp)

(MUTATE gene probability) The gene value gene is changed from a zero to a one or vice

versa with the specified probability. (ops.lisp)

(MUTATION chrom) A raw chromosome is passed to w0"rATI0ff. Each bit is mutated or not

via successive calls to Wt/TATE, returning the mutated chrom. (ops. lisp)

(I_A, RY_C0rJNT n_arylist maximum position) The function N/RY_COU_/T increments the

position of n_arylist by one. The position specifier starts with

zero indicating the farthest right input list position and the length of

the list minus one for the farthest left input list position. The func-

tion implements carry-over when a lower position is fined. In the toGA

program N3,RY_¢OU_T is used to implement a binary counter. An exam-

ple of a three bit binary counter implementation is as follows: InitiaLize

the counting list to (0 0 0). Call the the function with the following

arguments (N3,RY_COUNT '(0 0 O) 2 0). This specifies that position

zero (the least significant bit) of the list will be incremented in a bi-
nary 2 mode. The result of the call would be (0 0 1). Now if the

process is repeated using the result of the last call as the input list,

the resulting returned sequence of lists would be: (0 1 0), (0 1 1),
(1 0 0), (1 0 1) , (1 1 1). When all the values are at their

maximum the list should be reset to (0 0 O) before another call is ini-

tiated. (aux. lisp)

(NORM_SELECTION) This function compares the next two individuals indexed in the permu-

tation shuffle, returns the index number of the better individual, and

increments the pick index by two. (ops.lisp)

calc_val_21ag) Objective function values axe assigned to the new pop-

ulation newpop by the function OBJFUNCthrough successive calls to EXTRACT,

FILL_NIL..POSITIO_IS , SUBFUJCTIDN_DECODE, and SET_L_FlYtlCT_V,4LUE.

When calc_val_21ag is t, table look up is performed. When calc_val_:flag

is nil, the evaluation is bypassed. This feature is used during the pri-

mordial phase to prevent unnecessary reevaluation of function values.

(objfunc. lisp)

(PRIMORDIAL) The primordialphase ofthemGA iscoordinatedby thefunctionPRIMORDIAL.

Only selectionisperformed duringthisphase;cut,splice,and otherop-

eratorsare postponed to the juxtapositionalphase. With deterministic

fitnessfunctions,no reevaluationofa string'sfitnessisnecessaryduring

thisphase. The primary purpose ofthisphase isto dope the population

with the bestbuildingblocks,enablingtheirusefulrecombinationduring

the juxtapositionaJphase.(toga.lisp)

(OBJFUNC &optional

i0

w

(KESET..POP respop) This function creates a nil initialized population of size pops ize in the

population respop. (aux.lisp)

(KESET_STAT_INF0) The function (KESET.STAT_INFD) resets various statistical counters and

variables. It is executed prior to the evaluation of objective function

values across the population in 0BJFUNC. (stats.lisp)

(RND lo hi) A uniformly distributed random integer between low and high limits of

lo and hi is calculated by the function RND. (aux.lisp)

(SET_ASC..LIST list start) The function SET.ASC_LIST sets the first element of list to

the integer start. The following list positions are set to start+l,

start+2,.., start + list-length -I. (aux.lisp)

(SET_LIST list value) Th_s function initializesthe elements of list to value. (aux.lisp)

(SET_SUBFUNC_VALUE sub_info_list) This function takes the listof subfunction table num-

bers, scale factors, and bit lists generated by SUBFUNCTION..DECODE and

returns the subfunction fitness values as a list. The fitness values are set

by finding a match in the corresponding look-up table. (objfunc.lisp)
I

(SETUP_GA) This function is responsible for picking out the various fields in the setup

file and issuing calls to the other setup functions. (setup.lisp)

(SETUP_METER) This function sets up a meter that is 20 characters wide. It is used in

the objective function to show how much of the population has been

processed. (aux. lisp)

(SETUP_0BJ) This function uses the setup file to set up the look-up tables by issuing

calls to SETUP_TABLES. It also sets up the bit_spec subfunction specifier.

(setup. lisp)

(SETUP_POP) This function accesses the setup fileto set up all the population and

globa/parameters. (setup.lisp)

(SETUP_SUBFUNC_MAX) This function sets up a list of maximum possible values for the sub-

functions by accessing the lookup tables and applying the appropriate

scale factor. It is used to count optimal building blocks in the function

UPDATE_STATS. (stats. lisp)

(SETUP_TABLE) This function isresponsible forsetting up a singlelook-up table specified

in the setup file. (setup.lisp)

(SETUP_TEMPLATE) This function uses the setup fileto set the default fill-invalues of the

std_fill array. (setup.lisp)

(SHUFFLE_POP shuffle) This function creates a shuffled array shuffle of the population

member numbers. (aux. lisp)

(SPLICE chroml ¢hrom2) Two chromosomes ¢hroml and chrom2 are spliced together by

SPLICE, returning a single chromosome. (ops.lisp)

ii

w

(SPLICE_TESTEI_ splice_prob) The stack generated by the function CUT_AND_STACK isused

by SPLICE_TESTER to coordinate splicing.Pieces are successively popped

off the stack, and tests are performed for possible splicing of each piece

to the next. A successful spliceresultsin the placement of the result in

a fist of offspring that are subsequently placed in the new population.

(ops. lisp)

(STATISTICS) This function writes various stat]sticsvalues to the screen and to a file.

(stats. lisp)

(SUBFUNCTION_DECODE bit_list) This function takes the processed stringbitlist and gen-

erates a listof look-up table numbers, scale factors, and bit values

for each subfunction. This listof listsis passed on to the function

SET_SUBFUNC_VALUE, which performs the required table accesses.

(obj func. lisp)

(THRESH_SELECTION) Tournament selection with thresholding (genJc selective crowding) is

performed by the function THRESH_SELECTION. This function selectsthe

first participant as the next individual mentioned in the shuffle list as

indicated by the pick index. A threshold value is calculated to determine

how many genes two individuals must have in common to be compared,
and the next shufnum individuals in the shuffle list are checked for the

requisite gene commonality. The first individual with sufficient common-

ality is compared to the individual chosen earlier, and the index number

of the fitter is returned. If no individual with the required commonality is

found, the index number of the first participant is returned. (ops. lisp)

(UPDATE_STATS pop.member) The function UPDATE_STATS updates statistics for population

subfunction fitness maxima and averages. (stats.lisp)

E

4 Example Input and Output

This section provides an example run with setup file and output from the program. The example

is included to exercise many features of mGA1.0, thereby permitting the user to easily create

his own files.

4.1 The problem

The example problem is to find the optimum solution for a function composed of eight sub-
functions. The subfunctions are all deceptve and are decoded from two different look-up tables.

The first subfunction (subfunction 0) was designed using guidelines outlined in (Liepens & Vose,

1989). The second subfunction (subfunction 1) was designed by Goldberg (1989b). Three of
the subfunctions use subfunction 0 and the other five use subfunction 1 (see figure 3).

4.2 Setup file

The setup file is used to set the population variables, look-up tab.les, and decoding parameters.

The user is prompted for this file name when the mGA program is started. The file is composed

of two primary fields, the POPULATION and 0BJ fields. The setup file requires that the 0BJ field

12

E

6

5

decoded 4
value

3

2

decoded
value

000 O01 010 011 100

bit values

m

101 110

Function 0

30

25

20

15

10

5

000 010 011 100 101 110
bit values

Function 1

001

111

111

Figure 3: The two deceptive subfunctions used in the example problem.

L .

13

w

follow the POPULATION field, because some of the subfunction variables are set in the POPULATION

setup section. The setup file for the this example is as follows:

POPULATlON;;examplel - two deceptive lookup table problem

maxgen 30

cookgen 14

cutpopgen 12

init_select_gen 3

num_subfunctions 8

chrom_length 24

bldg_blk_size 3

seed 3

cut_prob .0208333

splice_prob 1

mut_prob 0

thres 1

shufnum 24

garbage.collect 2

OBJ

subfunction_bits

subfunction_bits

subfunction_bits

subfunction_bits

subfunction_bits

subfunction_bits

subfunction_bits

subfunction_bits

0 I 2 liable 0 scale 1

3 4 5 liable I scale 1

6 7 8 liable i scale 1

9 i0 11 liable 0 scale 1

12 13 14 liable 0 scale 1

15 16 17 Itable I scale 1

18 19 20 liable 1 scale i

21 22 23 liable i scale i

table 0

bvalue 0 0 0 dvalue 2

bvalue 0 0 i dvalue 0

bvalue 0 1 0 dvalue 5

bvalue 0 I 1 dvalue 2

bvalue I 0 0 dvalue 0

bvalue I 0 I dvalue 6

bvalue 1 i 0 dvalue 2

bvalue 11 I dvalue 0

end_table

table 1

bvalue 0 0 0 dvalue 28

bvalue 0 0 1 dvalue 26

bvalue 0 I 0 dvalue 22

bvalue 0 I I dvalue 0

14

bvalue I 0 0 dvalue 14

bvalue I 0 i dvalue 0

bvalue 11 0 dvalue 0

bvalue I 11 dvalue 30

end_table

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

template 0 i 0 0 0 0 0 0 0 0 I 0 0 1 0 0 0 0 0 0 0 0 0 0

end

There are a few conventions that should be noted in this file. A comment (anything that

follows a semicolon) is ignored. Anything that does not follow a valid label is ignored, so

comments, such as the bit location marker placed above template can be used rather freely.

The field name is not case sensitive, but the spelling of each field is important. The end of the

file is specified by the marker end. The POPULATION field is used to set up the population and

phase parameters. The parameters settings in this example are as follows:

maxgen 30

cookgen 14

cutpopgen 12

init_elect_en 3

The mGA program will execute 30 generations total (see figure 4).

The primordial phase will be executed for 14 generations, after this gen-

eration (generation 15 and on), juxtapositional processing will be used

(see figure 4).

Starting from generation 1 and up to generation 12, the population will

be cut in half every other generation (see figure 4).

Starting from generation zero and up to and including generation three,

the function INIT.SELECTION will be used for selection. (default = 1)

num_ubfunctions 8

chromleng_h 24

bldg_Ik_ize 3

seed 3

cut.rob .0208333

splice_prob I

mut_prob 0

thres t

There are eight subfunctions in the problem.

Since there are eight subfunction each of length three, the decoded chro-

mosome length is 24.

When the initial population is created, the function MAKE_NEW_POP will

create building blocks of size three.

The random number generator is seeded with the value 3.

The cut probability is set to one divided by twice the problem length.

(default = O)

The splice probabilty is set to 1 so that all splices will be successful.

(default= 1)

Mutation is turned off in this example. (default = 0)

Since the subfunctions lookup tables use two different scales (one is five

times the other), thresholding selection is used to preserve the weaker

building blocks.

15

i

D

E

GENERATION
variables

t " use INIT SELECTION_

[for selection routine)

cut population in half
every other generation

use NORM_SELECTION
or THRESH_SELECTION
for selection routine

PRIMORDIAL
(selection only)

JUXTAPOSITIONAL

(cut, splice, mutation & selection)

init_select_.gen

cut_popgen

cookgen

maxgert

Figure 4: Coordination of the primordial and juxtapostional phases.

16

w

shufnum 24 The shuffle number used by thresholding mechanism is set to the chro-

mosome length (Golberg, Deb, & Korb, 1990).

garbage_collect 2 Garbage co].lection will be done every other generation. (default = 1)

Some setup parameter of interest that are not used in this example are:

pspe If the value following this field is set to t, the partial-string-partial-
evaluation mode will be activated. When in this mode, the objective

function will only give values other than zero to fully specified strings.

Otherwise, the std_fill array is used to fill the unspecified bit positions

os that unsderspecified chromsomes can be decoded. (default = nil)

member_copies The number following this label will set the number of copies of each

population member to be created by the function MAKE.NEW.POP. (default

= 1)

The 0BJ field is composed of three subfields: subfunction setup, look-up table setup, and

the template field. The field is ended with the *** pattern. The first subfield, subfunction

setup, is specified by the following labels:

subfunction_bi'cs This label should be followed by the position numbers that should be

accessed in decoding the subfunction. For example if the bits (3 4 S)

are specified, the subfunction decode section of the program accesses the

bits in third, fourth, and fifth position to be used to find a match in the

look-up table.

ltable This label is followed by the lookup table that should be used in decoding

the subfunction.

scale This label is followed by a scale factor that is multiplied by the table

value. This parameter can be used to either strengthen or weaken the

sub function.

The second subfield, used to setup the look-up table, is specified by the following labels:

table This label specifies the look-up table number that identifies the look-up

table. This number can be any value, as long as it matches one specified

in the subfunction definition. It is suggested that the table numbering

start from zero and proceed sequentially for clarity.

bvalue This label specifies the bit pattern that is to be matched during table

look up.

dvalue This label specifies the value that will be assign to the subfunction when

the preceeding bit pattern is matched.

end_cable This label is used to mark the end of a look-up table.

These tables have been set up to implement table lookup for the two subfunctions shown in

figure 3.
The final subfield is the template field. This label is followed by the default fill-in values

for unspecified bit positions. This problem intentionally sets the default fill-in value to the

17

F

complement of the optimal subfunction. Observe subfunction 0 (see figure 3) which uses bits

(0 1 2) and has optimal value with bits set to (i 0 1). It has a default fill in for those positions

of (0 1 0), which is the complement of the optimum. The other default fill-in postions are set

in the same manner. The reason for doing this is so the toGA has to do all the work in finding

the optimum values and is not given the help of having optimum values filled in by default.

4.3 Off to the program

The program is started by typing (toGA) <cr>. It will then prompt the user for the filename;

this example uses examplel.asc. The program will then display the setup parameters read

from the file, and create the initial population. Once the initial population is created the

program starts execution. The objective function will first be executed and the program will

print the following:

OBJFUNC/STATISTICS (set fitnesses & update stats)

percent population processed

oX lOOZ

The meter shows how much of the population has been processed. The objective function

is first run so that the initial population fitnesses and statistics can be calculated. After this

phase the initial statistics will be output as follows:

Generation# 0

Popsize = 16192

Minfitness = 113

Maxfitness = 15Z

Average fitness = 145.93954

Maximum number of optimal subfunctions = I

Total number of optimal subfunctions = 8

Average number of optimal subfunctions = 4.9407115e-4

Total and Average

Total and Average

Total and Average

Total and Average

Total and Average

Total and Average

Total and Average

Total and Average

Number of optimal subfunctions in position

Number of optimal subfunctions in position

Number of optimal subfunctions in position

Number of optimal subfunctions in position

Number of optimal subfunctions in position

Number of optimal subfunctions in position

Number of optimal subfunctions in position

Number of optimal subfunctions in position

I = 1 and 6.1758895e-5

2 = 1 and 6.1758895e-5

3 = 1 and 6.1758895e-5

4 = 1 and 6.1758895e-5

5 = 1 and 6.1758895e-5

6 = 1 and 6.1758895e-5

7 = 1 and 6.1758895e-5

8 = 1 and 6.1758895e-5

Best solution so far =(0 1 0 1 1 1 0 0 0 0 1 0 0 i 0 0 0 0 0 0 0 0 0 O)

The statistics are written each generation both to the screen and to a file (statoutrd. dat).

Initially there is only one optimal building block in each subfunction position and ten optimal

building blocks in the entire pop_atJon. Once the initial statistics are printed out the program

executes the primordial phase and objective function as follows:

PRIMORDIAL

percent populaZioa processed

18

w

m

v

w

h

oX iooX

OBJFUNC/STATISTICS (update stats only)

percent population processed

oZ 100X

*************_******

Generation# 1

Popsize = 16192

Minfitness = 127

Maxfitness - 157

Average fitness I 149.33684

Maximum number of optimal subfunctions = 1

Total number of optimal subfunctions = 16

Average number of optimal subfunctions = 9.881423e-4

Total and Average Number

Total and Average Number

Total and Average Number

Total and Average Number

Total and Average Number

Total and Average Number

Total and Average Number

Total and Average Number

of optimal subfunctions

of optimal subfunczions

of opVimal subfunctions

of optimal subfunctions

of optimal subfunctions

of optimal subfunctions

of optimal subfunctions

of optimal subfunctions

in position i = 2 and 1.2351779e-4

In position 2 = 2 and 1.2351779e-4

in position 3 = 2 and 1.2351779e-4

in position 4 = 2 and 1.2351779e-4

in position 5 = 2 and 1.23517798-4

In position 6 = 2 and 1.2351779e-4

in position 7 = 2 and 1.2351779e-4

in position 8 = 2 and 1.2351779e-4

Best solution so far 1(0 I 0 I I i 0 0 0 0 i 0 0 I 0 0 0 0 0 0 0 0 0 O)

Fitness = 157

The primordial ph_e creates copies of individuals with highest fitness. Since the structures

with optimal building blocks have highest fitness they will be allocated an increasing number

of copies at each generation, and hence the population will be doped with good building blocks

by the juxtapositional phase . The program will continue in this manner until generation 15

(the generation after cookgen). Here the program begins the juxtapositional phase by using

the cut and splice operators. The maximum number of subfunctions in a single individual

immediately jumps to two and the maximum fitness increases. The number of optimal building

then increases in each subsequent generation until an optimal solution is found in generation 18

(see Figure 5). From this point on the toGA creates more and more optimal solutions until at

generation 30 almost every population member has optimal building blocks in all 8 positions.

The final statistical output is as follows:

Generation# 30

Popsize I 253

Minfitness I i00

Maxfitness I 168

Average fitness . 166.09882

Maximum number of optimal subfunctions I 8

Total number of optimal subfunctions = 1979

19

T

w

_w

w

Average number of optimal subfunctions = 7.8221345

Total and Average Number of optimal subfunctions in position 1 = 244 and 0.9644269

Total and

Total and

Total and

Total and

Total and

Total and

Total and

Average Number of optimal subfunctions

Average Number of optimal subfunctions

Average Number of optimal subfunctions

Average Number of optimal subfunctions

Average Number of optimal subfunctions

Average Number of optimal subfunctions

Average Number of optimal subfunctions

in position 2 = 248 and 0.9802371

in position 3 = 245 and 0.96837944

in position 4 = 249 and 0.984i8975

in position 5 = 246 and 0.972332

in position 6 = 249 and 0.98418975

in position 7 = 248 and 0.9802371

in position 8 = 250 and 0.9881423

Best solution so far =(1 0 1 1 1 i 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 i I)

Fitness = 168

This case is typical for the mGA. The number of function evaluations can be calculated as

follows:

no + nj • t j,

where n0 is the initial population, nj is the juxtapositional population size, and tj is the number

of generations in the juxtapositional phase to optimality. In the example run, the program

required

16192 + 253*4 = 17,204 function evaluations.

The mGA program writes a data file (DATA.DAT) which contains raw numerical data useful

for plotting. The plot of this example shows the convergence of the mGA in figure 5. The

file has a header for data reference at the top of the file and statistical data written for each

generation. As an example, the file for this problem starts as follows:

Generation Pops ize Maximum_Fitness Average_Fitness

0 16192 157 145.93954

1 16192 157 149.33684

2 16192 157 152.36339

3 8096 157 154.07239

4 8096 157 154

5 4048 157 155

6 4048 157 155

7 2024 i57 155

8 2024 157 155

9 1012 157 155

10 1012 157 155

8398

01631

05188

1O178

20207

37846

.72035

5 Conclusions

This report has presented brief documentation for the data structures and functions of a Com-

mon LISP implementation of a messy genetic algorithm. This implementation, mGA1.0, is

available as a research code for investigation of messy genetic algorithm theory and application.

2O

V

k .

e.,O

170

165

160

155

150

145

0

maximum fitness

......... average fitness :
.:" o'" ", eI

: • • s
so "_¢

:" toe •

: ss

t #

i

s
o

/

i i i i i

5 10 15 20 25

GENERATION

Figure 5: Optimal results are found quickly in this example.

30

21

.EL--

In its present state, the code includes the phased (primordial/justapositional) processing of

a messy GA, messy binary strings, messy cut and splice operators, and genic selective crowding.

The code does not currently include null bits or tie breaking, although these features wiU be

implemented soon.

Although mGA efforts are just beginning, because of their rapid convergence to global

optima in difficult combinatorial problems, these techniques are ready for additional scrutiny

and testing. Making this research code available is a first step in this direction.

Acknowledgments

This material is based upon work supported by NASA Cooperative Agreement Nccg-16, RICIS

Research Activity No. AI.12, Subcontract No. 045 and by the National Science Foundation

under Grant CTS-8451610. The authors also acknowledge equipment support provided by

Texas Instruments Incorporated and the Digital Equipment Corporation.

References

Goldberg, D. E. (1989a). Genetic algorithms in search, optimization, and machine learning.

Reading, MA: Addison-Wesley.

Goldberg, D. E. (1989b). Genetic algorithms and Walsh functions: Part I, a gentle introduc-

tion. Complex Systems, 3, 129-152.

Goldberg, D. E. (1989c). Genetic algorithms and Walsh functions: Part II, deception and its

analysis. Complex Systems, 3, 153-171.

Goldberg, D. E., & Bridges, C. L. (1990). An analysis of a reordering operator on a GA-hard

problem. Biological Cybernetics, 62(5), 397-405.

Goldberg, D. E., Deb, K., & Korb, B. (1990). An investigation of messy genetic algorithms

(TCGA Report No. 90005). Tuscaloosa: University of Alabama, The Clearinghouse for

Genetic Algorithms.

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation, analysis,

and first results. Complex Systems, 3.

Leipens, G.E., & Vose, M.D.(1989). Representationalissues in genetic optimization. Manuscript

submitted for publication.

T_
22

w

A Appendix

A.1 File: aux.lisp

The file aux.lisp contains utility and au_liary code for mGA1.0.

;=........ =....... FILE-AUX.LISP========

;=This file contains the auxilliary operators that accomplish some of the=

;=low level and irregular functions =

==================_ ===I=======_=

= = GET_CHROMOSOME
;====1=_ = =_====_

;accesses the structure of a population member and returns the chromosome

(defun GET_CHROMOSOME (pop loc)

(population_member-chrom (aref pop loc)))

;===== == GET_FITNESS======= =........ "......

;accesses the structure of a population member and returns the fitness

(defun GET_FITNESS (pop loc)

(population_member-fitness (aref pop loc)))

;........... ====

;accesses the structure of a population member and returns the subfunction

(defun GET_SUBFUNCTION_LIST (pop loc) ; value list

(population_member-subf_list (aref pop loc)))

;_____==_z===_==z=s======RNn _=========== _=====_____=_s_=====----

(defun RND (io hi) ;generates a random number from Io to hi

(+ Io (random (+ (- hi Io) i))))

::::::::::::::::::::::: COMBINATION=====---_====== =============

;creates a combination list of max_number items taken hum_places @ a time

(defun COMBINATION (max_number hum_places comb_list &aux exit)

(serf max_number (i- max_number)) ;adjust for list index 0 to n-i

(serf num_places (i- num_places)) ;instead of I to n

(if (< (nth hum_places comb_list) max_number)

;if low val (farthest right) is less than

;max_number then inrement by one

(serf (nth hum_places comb_list) (I+ (nth hum_places comb_list)))

(progn ;otherwise

(do ((j num_places (1- j))) ;check the rest of the positions

((or (< j l) exit))
(if (< (nth (1- j) comb_list)

(+ max_number (* -i num_places) j -I))

;look for one that can be inremented

(progn

(serf (nth (1- j) comb_list) (i+ (nth (I- j) comb_list)))

;increment the next high@st value that

23

w

;can be incremented

(do ((s j (i+ S)))

((> S hum_places))

;and set all following vals one

;higher than the value to its left

(serf (nth s comb_list)

(+ (nth (1- j) comb_list) s (- I j)11

(setf exit 't))) ;then exit

I)111

;== =============================== ===

;resets all population parameters to nil by recreating the structure

(defun RESET_POP (respop)

(do ((i 0 (I+ i)))

((>= i popsize))

(serf (aref respop i) (make-population_member))))

;................ = FLIP====== ===========

;simulates the flip of a weighted coin

(defun FLIP (probability _aux tbase)

(setq these I000000)

(>= (* probability zbase) (random these)))

;---_====== COMPLEMENT_BIT=========

(defun COMPLEMENT_BIT (bit &aux bit_retl ;changes a i to 0 or a 0 to 1

(setq bit_ret I)

(cond

((= bit 1)

(setq bit_ret 0)))

bit_ret)

:: ======

;creates a shuffled array of size popsize

(defun SHUFFLE_POP (shuffle _aux count num other)

(do ((i 0 (I+ i)))

((>= i popsize))

(serf (aref shuffle i) i))

(serf count (I- popsize))

(do ((j 0 (1+ j)))

((>= j count)) ;swap entire population _round

(serf num (RND j count)) ;determine random swap position

(serf other (aref shuffle hum))

(serf (aref shuffle num) (aref shuffle j)) ;swap one to the other

(serf (aref shuffle j) other))

;and the other back to the original place

shuffle)

24

L--

=

;sets up meter to show how much of the pop has been processed by OBJFUBC

(defun SETUP_METER ()

(format t "percent population processed-_")

(format t "OX IOOX "X"))

;............. N_ARY_COUNT _======

;counts a list in n-ary mode where n is maximum value Of count

(defun N_ARY_COUNT (n_ary_list maximum position &aux len)

(if (and (>= (nth (I- position) n_ary_list) maximum)

;if the position above is maxed out

(>= (nth position n_ary_list) maximum))

;and the current positon is maxed out

(N_ARY_COUNT n_ary_list maximum (I- position))

;then check next positon up with this subroutine

(progn

(if (>= (nth position n_ary_list) maximum)

;otherwise if just positon is maxed out but there

;is room above it for incrementation

(progn

(serf len (list-length n_ary_list))

(do ((i position (I+ i)))

((>= i len))

;set everything below the position to zero

(serf (nth i n_ary_list) 0))

;incremenmt the next higher positon

(serf (nth (I- position) n_ary_list)

(I+ (nth (1- position) n_ary_list))))

(serf (nth position n_ary_list) (I+ (nth position n_ary_list))))

;if neither of these conditions are met,

;just increment the current position

))

n_ary_list) ;return the incremented n_ary list

, '...... ====================== ,= =====

(defun CHOOSE (nl n2) ;statistical operator nl choose n2

(/ (factorial nl) (* (factorial n2) (factorial (- nl n2)))))

::: ===============

(defun FACTORIAL (n _aux ret_val) ;standard star factorial operator

(serf ret_val 1)

(do ((i 1 (1+ i)))

((> i n))

(serf ret_val (* i ret_val)))

ret_val)

;...... ==== ==

;sets up an ascending list starting at start and ending with start+length

25

L

(defun SET_ASC_LIST (list start)

(do ((i start (I+ i)))

((>= i (list-length list)))

(serf (nth i list) i)))

;=.......... ===============================

;sets all the elements of a list to a value

(defun SET_LIST (list value)

(do ((i 0 (I+ i)))

((>= i (list-length list)))

(serf (nth i list) value)))

w

t==

m 26

=

A.2 File: decode.lisp

The file decode.lisp contains the code necessary to compute a processed string from a raw

string.

;==___===: FILE-DECODE.LISP========== ========

;=This file contains functions responsible for decoding a raw chromosome =

;=thereby generating a processed chromosome =

;=======================_=_=============_====_==_=======_=======_===z_==

;=== =====================================

;EXTRACT takes a position/value list mGA coding and puts the bits in their

;proper positions example-- (EXTRACT ((2 0)(I I)(3 I)))

; would return (nil I 0 i...)

(defun EXTRACT (chrom _aux ret_list pos val pos_val no_duplicate length)

(serf ret_list (make-list bits_per_chrom))

;setup list to copy bits into

(serf no_duplicate (remove-duplicates chrom :key 'car :from-end 't))

;remove overspecified positions

(setf length (list-length no_duplicate))

;get # of positions to be set

(do ((i 0 (1+ i)))

((>= i length))

(serf pos_val (nth i no_duplicate))

(serf pos (nth 0 pos_val)) ;get position

(serf val (nth I pos_val)) ;get value

(serf (nth pos ret_list) val))

;set ret_list pos(ition) to val(ue)

ret_list)

;=== FILL_NIL_POSITIONS======= ====== =.... ==

;fills unspecified positions with std_fill array vals

(defun FILL_NIL_POSITIONS (list1)

(do ((pos 0 (i+ pos)))

((>= pos (list-length listl)))

(if (equal (nth pos list1) nil)

;look for positions w/ nil value

(setf (nth pos listl) (nth pos std_fill))))

;& fill them w/ std_fill array

listl)

m

m

27

L

. J

A.3 File: mga.lisp

The file mga. lisp contains data declarations, the main program, and major coordination _nc-

tions.

;======== ==================================

;=This file contains the global variable declarations, the mGA function, =

;=and important phase coordination functions =

;=========================_ _====_=======

(defstruct population_member chrom fitness subf_list)

;structure used for each member of a population

(defstruct bit_cluster table_specifier scale_factor bit_specifier)

;structure used for bit specifier decoder

(defvar avg_fitness) ;statistical variable which specifies the

(defvar bit_spec)

(defvar bits_per_chrom)

(defvar bldg_blk_size)

(defvar cookgen)

(defvar cut_=rob)

(defvar cutpopgen)

(defvar data)

(defvar first_time)

(defvar garbage_collect)

(defvar indata)

(defvar init_select_gen)

(defvar instream)

(defvar lookup_table)

(defvar loopvar)

(defvar max_numgood)

(defvar maxfitness)

(defvar maxgen)

(defvar member_copies)

(defvar minfitness)

(defvar mut_prob)

;population average fitness

;specifies for each subfunction bits,scale

;factor and lookup table

;specifies the length of decoded chromosome

;set in setup file is used to generate initial

;population

;the # of generations in the primordial phase

;prob that a chrom will be cut into two pieces

;by CUT

;the # of generations up to that the pop will

;be cut in half

;stream to output data for plotting or analysis

;flag used by SETUP_GA to mark first time

;through setup routine

;set number of generation between garbage

;collections

;temp variable used to read from file

;(see SETUP_GA)

;# of generations to use INIT_SELECTION

;a stream used to read from the setup file

;specifies the bit strings and their

;coresponding decoded values

;is the generation counter

;statistical variable which keeps track of

;max # of optimum building blocks

;statistical variable which holds the maximum

;decoded chrom fitness

;the total # of generations that will be executed

;# of building block copies to be made in initial

;population

;statistical variable which holds the maximum

;decoded chrom fitness

;probability that s single bit will be mutated

;by MUTATION

28

v

(defvar newpop) ;array of structure population_member

(defvar num_subfunctions) ;specifies the # of subfunctions

(defvar hum_tables)

(defvar numgood)

(defvar oldpop)

(defvar pick)

(defvar popsize)

(defvar pspe)

(defvar screen_file)

(defvar seed)

(defvar setup_file)

(defvar shuffle)

(defvar shufnum)

(defvar splice_prob)

(defvar stack)

(defvar stat)

(defvar std_fill)

(defvar subf_pos_max)

(defvar sumfitness)

(defvar thres)

(defvar vertnum_spot)

;specifies the # of lookup tables

;star variable which keeps track of the total # of

;(111) building blocks

;array of structure population_member

;postion marker for selection routines

;THRESH_SELECT,NORM_SELECTION _ DET_SELECT

;the size of the population

;flag for partial string partial evaluation

;output stream for both screen and file

;random # generator seed

;name of the file that the setup parameters

;are read from

;shuffle array used in selection routines

;max # of pop members that will be looked at in

;THRESH_SELECT

;prob that two chrome will be spliced together

;by SPLICE

;global stack for subsequent calls to stack

;output statistical file path vairable

;array used for filling in unspecified positions

;during chrom decode

;list used to count optimal building blocks

;star variable which holds the sum of all the

;fitnesses in the pop

;is a flag when set true the program will use

;THRESH_SELECT for selection

;stat counter that countes the # of optimal

;building blocks for each subfunction position

:::

;this is the main control structure of the program that is in charge

;of overall program flow

(defun mGA (&aux max_gene)

(format t "MGA'_")

(setq w:more-processing-global-enable nil)

;keeps _MORE from waiting for key hit

(setq star (open "statoutrd.dat" :direction :output))

;open data file for st_ts

(setq screen&file (make-broadcast-stream _standard-output_ star))

;sets up output screen & file streams

(setq data (open "data.dat" :direction :output));sets up data file

(serf loopvar O)

(SETUP_GA) ;program which loads setup file

(INITIAL_0UTPUT) ;output initial information

(serf subf_pos_max (SETUP_SUBFUNC_MAX)) ;serf up subfunczion maxim

;for statistics optimium bldg block counting

29

w

L_

w

m

(setq *random-state* (system:random-create-array 71. 35. seed))

;seed random # generator

(serf max_gene (1- bits_per_chrom)) ;set array max number

(MAKE_NEW_POP bldg_blk_size bits_per_chrom member_copies)

;generate every useful building block

;of size building_blk_size

(OBJFUNC t) ;calculate initial objective function vals

(STATISTICS) ;print out statistics

(do ((gen_count I (I+ gen_count))) ;generation loop

((> gen_count maxgen))

(serf pick O) ;reset shuffle array pointer

(serf loopvar gen_count) ;sets global loopvar to local gen_count

(if (= (rem gen_count garbage_collect) O)

(progn

(format t "collecting garbage'S") ;collect garbage

(gc-immediately :silent t)

(format t "finished collecting garbage'X")))

(if (<= gen_count cookgen)

;check for primordial phase or juxtapos phase

(progn

(serf shuffle (make-array popsize)) ;create shuffle array

(SHUFFLE_POP shuffle) ;initialize shuffle array

(PRIMORDIAL) ;execute primordial phase

(STATISTICS) ;print out statistics

(if (and (<= gen_count cutpopgen) (evenp gen_count))

;start cutting population in half from 2nd

;generation up to and including cutpopgen

(setf popsize (round (/ (float popsize) 2)))))

;cut population in half

(progn

(SHUFFLE_POP shuffle) ;initialize shuffle array

(JUXTAPOSITIONAL) ;execute juxtapositional phase

(STATISTICS)))) ;print out statistics

(close data)

(close star)) ;close the statistical and data files

;=....... === ====---

;uses deterministic selection to reproduce a new pop (no cut or splice)

(defun PRIMORDIAL (Eaux position step)

(format t "-_'_PRIMORDIAL'_") ;print out wht phase the program is in

(serf oldpop (copy newpop)) ;copy over all pop info to oldpop

(serf newpop (make-array popsize))

(SETUP_METER)

(serf step (round (/ (float popsize) 20)))

;setup disp meter stepsize-meter is 20 chars wide

(do ((i 0 (I÷ i)))

((>= i popsize))

(if (= (rem i step) 0) ;if even multiple of step, then

30

(princ "*")) ;print a mark for 1/20th of population processed

(setq position (DET_SELECTION)) ;select individual

(serf (aref newpop i) (aref oldpop position)))

;set newpop to the individual

(OBJFUNC)) ;call short objective function

;......... =======3UXTAPOSITIONAL

;uses deterministic selection and cut and splice to produce new population

(defun JUXTAPOSITIONAL (_aux position1 position2 matel mate2 cross count

hum_of_children step)

(format t "-Z-_JUXTAPOSITIONAL-_") ;print out what phase the program is in

(setf oldpop (copy newpop)) ;copy over all pop info to oldpop

(SETUP_METEK)

(serf step (round (/ (float popsize) 20))I

;setup disp meter stepsize-meter is 20 chars wide

(RESET_POP newpop) ;reset shuffle array

(serf count O) ;reset counter

(do (1 ;add # of children each time through the loop

((>= count popsize))

(serf positionl (DET_SELECTION)) ;select positionl

(serf position2 (DET_SELECTION)) ;select position2

(setq matel (GET_CHROMOSOME oldpop positionl))

;get chromosome of matel @ position1

(setq mate2 (GET_CHKOMOSOME oldpop position2))

;get chromosome of mate2 @ position2

(serf cross (CKOSSOVEK mate1 mate2 cut_prob splice_prob))

;perform crossover of the two

(serf hum_of_children (list-length cross))

;get # of children from resulting cross

(do ((k 0 (i+ k)))

((or (>= k num_of_children) (>= count popsize)))

;copy over children to newpop

(serf (population_member-chrom (aref newpop count))

(MUTATION (nth k cross)))

(if (= (rem count step) O) ;if even multiple of step, then

(princ "*")) ;print a mark for 1/20th of population processed

(serf count (i+ count))))

(OBJFUNC t)) ;use long objectve function-lookup table for

;new chromosomes formed

31

w

A.4 File: objfune.lisp

The file objfunc.lisp contains the code to per_rm sub_nction table look up.

;........................ FILE-OBJFUNC.LISP= ====

;=This file contains functions related to subfunction look-up, sacaling

;=and summation as well as setting the overall member fitnesses

;=......... ====OBJFUNC =....=======================

;is responsible for accessing and decoding population members fitness via

;decode operators and set the overall population member's fitness

(defun OBJFUNC (koptional calc_val_flag aaux chromosome step)

(RESET_STAT_INFO)

(format t "'_'_ OBJFUNC/STATISTICS ") ;let user know whether

(if calc_val_flag

(format t "(set fitness & update stats)-_")

;long lookup table is being used or

(format t "(update stats only)-_"))

;short no lookup table is being used

(SETUP_METER) ;sets up to display ammount of pop processed

(serf step (round (/ (float popsize) 20)))

;setup disp meter stepsize-meter is 20 chars wide

(do ((i 0 (1+ i)))

((>= i popsize))

(if (= (rem i step) O) ;if even multiple of step, then

(princ "*")) ;print a mark for 1/20th of population processed

(if calc_val_flag ;this flag is set if decode is to be used

(progn

(sets chromosome (GET_CHROMOSOME newpop i))

(sets chromosome (EXTRACT chromosome))

(if (not pspe) ;is pspe flag is not set then

(serf chromosome (FILL_NIL_POSITIOHS chromosome)))

;fill in unspecified positions w/ std_fill array

(sets chromosome (SUBFUNCTION_DECODE chromosome))

;get bits & decode inSo for subfunctions

(sets chromosome (SET_SUBFUNC_VALUE chromosome))

;generate subfunction value list

(sets (population_member-suhf_list (aref newpop i)) chromosome))

;save subfunction list as part of chromosome

(progn ;iS value does not need to be calculated

(serf chromosome (GET_SUBFUNCTION_LIST newpop i))

;get just update the statistics

))

(sets (population_member-fitness (ares newpop i))

(eval (push '+ chromosome)))

;calc overall fitness (add up all subfunc vals)

(UPDATE_STATS i)) ;& update stats with them

(fresh-line))

32

E--

w

--=

;............. SET_SUBFUNC_VALUE=-========== ==== ==

;table lookup for list of subfunctions the list resembles the following

;((lookup_table# scale factor (subfunc bits))(lookup_table# ()) ())

(defun SET_SUBFUNC_VALUE (sub_info_list &aux subf_string subfunct_table

scale_factor subfunct_table# ret_val_list

num_of_decode)

(serf hum_of_decode (list-length sub_info_list))

;get # of subfunctions to decode

(serf ret_val_list (make-list num_of_decode))

;setup list to be returned of subfunction

;decoded values

(do ((subf_num 0 (i+ subf_num)))

((>= subf_numnum_of'decode)) ;run through all the input list

(serf subfunct_table# (nth 0 (nth subf_num sub_info_list)))

;get lookup table#

(serf scale_factor (nth i (nth subf_num sub_info_list)))

;get lookup table#

(serf subf_string (nth 2 (nth subf_num sub_info_list)))

;get string to be matched

(setf subfunct_table (nth subfunct_table# lookup_table))

;access the lookup table specified by subfunct_table#

(do ((i 0 (12 i)))

((>= i (list-length subfunct_table)))

;go through all the lookup table entries

(if (equal (nth 0 (nth i subfunct_table)) subf_string)

;check for a match of decoded lists

(serf (nth subf_num ret_val_list)

;if there is a match set the subfunction to

;the coresponding table value

(_ (nth 1 (nth i subfunct_table)) scale_factor)))

(if (equal (nth subf_num ret_val_list) nil)

(serf (nth subf_num ret_val_list) 0))))

;no match in table means string not fully specified

ret_val_list) ;or not specified in table, so fitness is zero

; =======SUBFUNCTIDN_DEC0DE ====== ====

;given the bit list will decode from the lookup table the subfunction

;values final list resembles--

;((lookup_table#,scale factor,(subf_bit_list),(....),(....) (....))

(defun SUBFUNCTION_DECODE (bit_lis_ &aux subf_info scale_factor

bit_specifier table_specifier temp_list

bit_value subf_information)

(serf subf_information '()) ;clear list

(do ((subf_num 0 (I+ subf_num)))

;bit_spec specifies subfunction bits, scale factor

;& lookup table for each subfunction

((>= subf_num(list-length bit_spec)))

33

L

m

=--

(serf subf_info (nth subf_num bit_spec))

;get single subfunction specifier off bit_spec

(serf scale_factor (bit_cluster-scale_factor subf_info))

;get scale factor

(serf bit_specifier (bit_cluster-bit_specifier subf_info))

;get bit specifier (position numbers)

(serf table_specifier (bit_cluster-table_specifier subf_info))

;get table specifier

(serf temp_list '())

(do ((i 0 (i+ i))) ;get all specified bits & put them in a list

((>= i (list-length bit_specifier)))

(serf bit_value (nth i bit_specifier)) ;get bit value

(push (nth bit_value bit_list) temp_list)) ;put it on list

(serf temp_list (list (reverse temp_list)))

(push scale_factor temp_list) ;put scale factor on list

(push table_specifier temp_list) ;and table specifier

(push temp_list subf_information))

;put all this on the subfunction information list

(reverse subf_information))

m

34

-%=

l

A.5 File: ops.lisp

The file ops.lisp contains the various selection functions and the genetic operators.

;========== -FILE_OPS.LISP============

;=This file contains all the mGA genetic operators.

;takes chromosome cuts it a returns the 2 pieces

(defun CUT (chromosome &aux rd len)

(serf len (list-length chromosome));cut position is random

(if (> len I)

(serf rd (RND 1 (1- len))))

(cond

((<= len I) (list chromosome '()))

((list (subseq chromosome 0 rd) (subseq chromosome rd len)))))

;......... =,SPLICE....=............

;takes 2 pieces puts them together and returns the result

(defun SPLICE (chroml chrom2)

(append chroml chrom2))

; MUTATE==

;changes a single bits value 1 to 0 or vice versa at a rate of probability

(defun MUTATE (gene probability)

(cond

((FLIP probability) (serf gene (COMPLEMENT_BIT gene))))

gene)

; MUTATION

;takes a chromosome and checks for a mutation at each bit

(defun MUTATION (chrom _aux len)

(cond

((not (zerop mut_prob))

;if mutation rate is not zero

(serf len (list-length chrom))

;mutation is determined by mut_prob

(do ((i i (I+ i)))

((> i len)) ;run through entire chrom

(serf (nth i (nth (I- i) chrom))

(MUTATE (nth 1 (nth (1- i) chrom)) mut_prob)))))

chrom) ;return chrom

;.......... ======= =========CUT_AND_STACK=== = =

;takes 2 strings matel and mate2 cuts them and returns list of cut pieces

(defun CUT_AND_STACK (matel mate2 cut_prob &aux loc_stack)

(cond

((FLIP (* cut_prob (list-length matel))) ;check for cut

(setq mate1 (CUT mate1))

35

m

w

;if so then cut mate1

(push (cadr mate1) loc_stack)

;put second piece of mate1 on stack

(setq matel (pop matel))))

;set matel to first piece

(cond

((FLIP (_ cut_prob (list-length mate2))) ;check for cut

(progn

(setq mate2 (CUT mate2))

;if so then cut mate2

(push (cadr mate2) lot_stack)

;put second piece of mate2 on the stack

(push (pop mate2) loc_stack)))

;put first piece of mate2 on the stack

((push mate2 loc_stack)))

;otherwise put mate2 (uncut) onto the stack

(push matel loc_stack)) ;put mater (cut or uncut) onto the

;stack _ return it

;========== === CROSSOVEK===

(defun CKOSSOVER (matel mate2 cut_prob splice_prob _aux childi child2

child3 child4 cross)

(serf stack (CUT_AND_STACK matel mate2 cut_prob))

;generate stack of cut pieces

(serf childl (SPLICE_TESTEK splice_prob))

;check for splice on childl

(serf child2 (SPLICE_TESTER splice_prob))

;check for splice on child2

(setf child3 (SPLICE_TESTER splice_prob))

;check for splice on child3

(setf child4 (SPLICE_TESTER splice_prob))

;check for splice on child4

(serf cross (list childl child2 child3 child4))

;return list of children

(remove nil cross))

m

m

;== ==

;tests for splice between CUT_AND_STACK(ed) pieces list name -stack

;example stack (resembles) --> '((a b c) (d • f) (h i) (j k I)) execute-

;(SPLICE_TESTEK 1.0) (100_ prob) (a b c d e f) (top two members spliced)

;(SPLICE_TESTEK O) (0_ prob) (abc) (top member nosplice)

(defun SPLICE_TESTEK (splice_prob)

(cond ;make sure stack is not empty

(stack (cond

((FLIP splice_prob)

;if splice then splice two pieces of stack

(SPLICE (pop stack) (pop stack)))

36

v

m

((pop stack))))

))

;otherwise return top member of stack

;== =.... INIT_SELECTION

;compares successive shuffled population members amd returns the fittest

(defun INIT_SELECTION (_aux first second fittest)

(if (>= pick popsize) ;if array has been gone through just reset

(serf pick 0)) ;the pointer to zero

(serf first pick) ;get the first

(serf second (I+ pick)) ;get the second

(serf pick (+ pick 2)) ;inrement location +2

(if (>= (GET_FITNESS oldpop first)

(GET_FITNESS oldpop second)) ;compare fitnesses

(serf fittest first) ;_ return fittest

(serf fittest second))

fittest)

;============== DET_SELECTION======================

;controls type of selection routine to be used

(defun DET_SELECTION (Eaux fittest)

(if (< loopvar init_select_gen)

(serf fittest (INIT_SELECTION))

;use INIT_SELECTION for first three generations

(pro&n%

(if (equal three nil) ;check three flag

(serf fittest (NORM_SELECTION shuffle))

;three flag is not set use normal selection

(serf fittest (THRESH_SELECTION)))))

;if it is set use three selection

fittest)

;......... =..... ======= NORM_SELECTION = =='===============

(defun NORM_SELECTION (shuffle aaux first second fittest)

(if (>= pick (1- popsize))

(progn

(serf pick O) ;when you reach the end of the array then,

(SHUFFLE_POP shuffle))) ;re-shuffle it

(serf first (aref shuffle pick)) ;select two guys from it

(serf second (aref shuffle (1+ pick)))

(serf pick (+ pick 2)) ;increment pointer

(if (< (GET_FITNESS oldpop first) (GET_FITNESS oldpop second))

;compare the fitnesses of the two

(serf fittest second)

(serf fittest first))

fittest) ;return the fittest

:: ===================

(defun THRESH_SELECTION (&aux first second chroml chrom2 fittest threshold

37

=--

= :

E

z

flag stop_position position pts_alike length1 length2)

(if (>= pick (- popsize shufnum))

;if there's not enough room at the end of the pop

(progn ;to run through shufnum# members, then reset the

(serf pick O) ;pick and the shuffle array

(SHUFFLE_POP shuffle)))

(serf stop_position (+ pick shufnum))

(serf first (aref shuffle pick))

(serf fittest first)

(serf chroml (copy (GET_CHKDMOSOME oldpop first)))

;get chrom with removed duplicates

(serf chroml (remove-duplicates chroml :key 'car :from-end 't))

(serf length1 (list-length chroml))

(serf position (1+ pick))

(do ((i 1 (1+ i)))((or flag (>= position stop_position)))

(serf position (+ i pick)) •

;exit if three(hold) is reached or if shufnum

;members have been looked at

(serf second (aref shuffle position))

(serf chrom2 (copy (GET_CHROMOSOME oldpop second)))

;get chrom with removed duplicates

(serf chrom2 (remove-duplicates chrom2 :key 'car :from-end 't))

(serf length2 (list-length chrom2))

(serf threshold (/ (_ lengthl length2) shufnum))

;calculate threshold value

(serf pie_alike (list-length (intersection chroml chrom2 :key 'car)))

(cond ((>= pts_alike threshold)

;calculate the # of common points

(progn ;if # of common pts > threshold value

(serf flag 't)

(if (>= (GET_FITNESS oldpop first) (GET_FITNESS oldpop second))

;compare fitnesses

(serf fittest first) ;_ return most fit member

(serf fittest second))

(setf (aref shuffle (+ pick i)) (aref shuffle (I+ pick)))

;swap the two positions

(setf (aref shuffle (i+ pick)) second)))))

(serf pick (+ pick 2)) ;increment pointer

fittest) ;return the fittest

38

T--

__.

m

w

m

i

r--

w

A.6 File: setup.lisp

The file setup.lisp contains theinitiaUzation code _r mGA1.0.

;.............. -........... FILE-SETUP.LISP

;=This file contains the clode for setting up all the parameters od the =

;=mGA via a user specified setup file. The routines are primarily =

;=involved with accesssing the file, pattern matching and the setting =

;=the specified parameter. The exeption is MAKE_NEW_POP (see below) =

;== ==== MAKE_NEW_POP =======

(defun MAKE_NEW_POP(hUm_positions max_length &optional copies _aux count

bit_positions position_list bit_list bits max_size)

(format t "'%Making Population of building block size "A" hum_positions)

(format t "-Zand chromosome length "A" max_length)

(cond ((not copies)

(serf copies 1)))

(serf bit_positions (expt 2 nu/n_positions))

;calc bit position counter

(serf max_size

(* copies (* bit_positions (CHOOSE max_length hum_positions))))

;calc pop size for blocks

(serf newpop (make-array max_size))

;create newpop array

(serf position_list (make-list num_positions))

;create position list

(SET_ASC_LIST position_list O)

;initialize to (0 I 2 ...hum_positions-I)

(serf bit_list (make-list num_positlons)) ;create bit_list

(serf count O)

(do ()

((>= count (1- max_size))) ;generate every block

(SET_LIST bit_list O) ;reset bit_list to all zeros

(do ((j 0 (i+ j))) ;run through all bit combinations

((>= j bit_positions))

(setf bits nil) ;reset temporary bit/value holder

(if (/= j O) ;on second and subseq passes increment bit_list

(N_ARY_COUNT bit_list I (I- num_positions)))

(do ((k 0 (I+ k)))

((>= k num_positions)) ;create pos/value list

(push (list (nth k position_list) (nth k 5it_list)) bits))

(do ((m 0 (1+ m)))

((>= m copies)) ;make copies if specified

(serf (aref newpop count) (make-population_member))

;create structure populaZion_memeber

(sezf (population_member-chrom

(aref newpop count)) (reverse bits))

;set member to the biZ/val list

(serf count (1+ count)))

39

L

)

(COMBINATION max_length num_positions position_list))

;increment to next position

(format t "'%Population Size is now "A-%" count)

(serf popsize count)) ;return population size created

; >>>>>>>>>LOAD PROGRAM STARTS HERE<<<<<<<<<<<<<<

;the purpose is to setup all the global variables given a setup file

; :SETUP_GA

(defun SETUP_GA ()

(setf first_time I)

(fresh-line)

(format t "enter name of setup file--") ;

(setf setup_file (read)) ;get name of setup file from user

(fresh-line)

(serf instream (open setup_file :direction :input))

;open setup file for reading

(serf indata (read instream)) ;read from setup file

(do () ((equal indata 'end)) ;read until end marker is reached

(if (equal indata 'OBJ) ;if OBJ marker is reached go to SETUP_OBJ

(SETUP_OBJ))

(if (equal indata 'POPULATION) ;population setup marker

(SETUP_POP))

(serf indata (read instream))

)

(close instream) ;close setup file

(format t "setup file "A is loaded'_" setup_file))

;inform that setup file has been loaded

;====.========= ========================

;sets up objective function parameters

(defun SETUP_OBJ (&aux inlist table# scale subfunction)

(serf subfunction O)

(setf hum_tables O)

(serf bit_spec (make-list num_subfunctions))

;create bit specifier array

(format t "setting up objective function'S")

;tell user what's being set up

(serf indata (read instream)) ;read from file

(do () ((equal indata '_)) ;read until _ patterm is found

(if (equal indata 'subfunction_bits) ;if setup for subfunction bits

(progn

(serf inlist nil) ;reset all parameters

(serf table# nil)

(serf scale nil)

(setf indata (read instream)) ;read next data item from file

(do () ((not (numberp indata))) ;read until a # is not encountered

4O

(push indata inlist)

;make it into a list of numbers

;(the subfunction bits)

(serf indata (read instream))) ;read next

(if (equal indata 'liable) ;if lookup table label then,

(progn

(serf indata (read instream)) ;read next value

(setf table# indata) ;get lookup table number

(if (> table# hum_tables) ;keep track of # of lookup tables

(serf num_tables table_))

(setf indata (read instream)) ;read next file data

))

(if (equal indata 'scale) ;if scale factor

(progn

(setf indata (read instream)) ;read in data

(serf scale indata))) ;assign it to scale

;now that all data has been gotten for 1

;subfunction setup bit_spec structure for it

(setf (nth subfunction bit_spec)

(make-bit_cluster :bit_specifier (reverse inlist)

:table_specifier table#

:scale_factor scale))

(fresh-line)

(serf subfunction (I+ subfunction))))

;increment subfunction counter

(if (equal indata 'table)

;if lookup table then go to lookup table setup routine

(SETUP_TABLE))

(if (equal indata 'template)

;if template then go to template setup section

(SETUP_TEMPLATE))

(serf indata (read instream)) ;read next data

))

;==========. ===================================== ==============

;sets up competitive template

(defun SETUP_TEMPLATE () ;

(serf std_fill (make-list bits_per_chrom))

;setup size of standard fill array

(do ((i 0 (1+ i)))

((>= i bits_per_chrom)) ;get all the bits

(serf (nth i std_fill) (read instream)))) ;set the bits

;=== ==

;sets up lookup tabl6 made of two parts-bits and coresponding value

(defun SETUP_TABLE (kaux table_number inlist data_value)

(format t "setting u R lookup table'S")

41

(cond

(first_time ;if the first time through then create

;the lookup table

(setf lookup_table (make-list (1+ hum_tables)))

(serf first_time nil)))

(serf table_number (read instream))

(serf indata (read instream))

(do () ((equal indata 'end_table))

(serf inlist nil)

(serf data_value nil)

(if (equal indata 'bvalue)

(progn

(serf indata (read instream))

(do () ((not (numberp indata)))

(push indata inlist)

(serf indata (read instream))) ;assign to bit list

(if (equal indata 'dvalue) ;if data value

(progn

(serf indata (read instream))

(serf data_value indata) ;assign data value

(serf indata (read instream))))

(push (list (reverse inlist) data_value)

(nth table_number lookup_table))

;put bits & coresponding value on lookup table

))))

;get table number

;read next file data

;read until the end of that table

;get data value from file

;if bit value

;........ ======== ========SETUP_POP =

;this routine sets up population parameters

(defun SETUP_POP ()

(format t "setting up population parameters'_")

(serf bits_per_chrom nil)

(serf maxgen nil)

(serf num_subfunctions nil)

(serf cookgen nil)

(serf shufnum nil)

(serf seed nil)

(serf cutpopgen nil)

(serf cut_prob O)

(serf splice_prob O)

(serf mut_prob nil)

(serf pspe nil)

(serf thres nil)

(serf garbage_collect I)

(serf bldg_blk_size nil)

(serf member_copies i)

(serf init_select_gen 1)

(serf indata (read instream))

(do () ((equal indata '_)) ;read until star pattern is encountered

42

L_

m_

(cond ((equal indata 'chrom_length)

(serf indata (read instream))

(serf bits_per_chrom indata))

((equal indata 'maxgen)

(serf indata (read instream))

(serf maxgen indata))

((equal indata 'num_subfunctions)

(serf indata (read instream))

(serf num_subfunctions indata))

((equal indata 'cookgen)

(serf indata (read instream))

(serf cookgen indata))

((equal indata 'shufnum)

(serf indata (read instream))

(serf shufnum indata))

((equal indata 'seed)

(serf indata (read instream))

(serf seed indata))

((equal indata 'cutpopgen)

(serf indata (read instream))

(serf cutpopgen indata))

((equal indata 'cut_prob)

(serf indata (read instream))

(serf cut_prob indata))

((equal indata 'splice_prob)

(serf indata (read instream))

(serf splice_prob indata))

((equal indata 'mut_prob)

(serf indata (read instream))

(serf mut_prob indata))

((equal indata 'pspe)

(serf indata (read instream))

(serf pspe indata))

((equal indata 'thres)

(serf indata (read instream))

(serf thres indata))

((equal indata 'bldg_blk_size)

(serf indata (read instream))

(serf bldg_blk_size indata))

((equal indata 'init_select_gen)

(serf indata (read instream))

(serf init_select_gen indata))

((equal indata 'member_copies)

(serf indata (read instream))

(serf member_copies indata))

((equal indata 'garbage_collect)

(serf indata (read instream))

(serf garbage_collect indata)))

43

(serf indata (read instream)))) ;ge_ next data

44

L

A.7 File: stats.lisp

The file stats, lisp contains statistical and reporting functions _r mGAl.O.

== FILE STATS.LISP

;=This file contains the statistical and reporting related code
=E

, •....... INITIAL_0UTPUT ===== ==

;writes out initial data to data file, statistics file and screen

(defun INITIAL_0UTPUT ()

(format

(format

(format

(format

(format

(format

(format

(format

(format

(format

(format

screen_file "'3_RUN PARAMETERS'%")

screenafile "Maxgen = -A-%" maxgen)

screen_file "Cookgen = "A'_"cookgen)

screen_file "Cutpopgen = -A'_" cutpopgen)

screen_file "Init_select_gen = "A'_" init_select_gen)

screen&file "Threshold = "A'_" thres)

screen_file "Shuffle-Down Number = "A-%" shufnum)

screen&file "Random Seed = "A'_" seed)

screen_file "pspe = "A'%" pspe)

screen_file "Competitive Template- -A'3%" std_fill)

data "Generation Popsize Maximum_Fitness Average_Fitness-Z"))

;= = =======================

(defun UPDATE_STATS (pop_member _aux good_count subf_list total_fitness)

(serf total_fitness O) ;reset counter variables

(serf good_count O)

(serf subf_list (GET_SUBFUNCTION_LIST newpop pop_member))

(serf total_fitness (GET_FITNESS newpop pop_member))

(do ((j 0 (1+ j)))

((>= j (list-length subf_list)))

;run through all the subfunctions for the subf_list

(if (>= (nth j subf_list) (- (nth j subf_pos_max) .01))

;check for max subfunctions

(progn

(setf good_count (I+ good_count))

;local counter to keep track of max # of optimal

;subfunctions in single chrom

(serf (aref vertnum_spot j) (I+ (aref vertnum_spot j)))

;keeps track of max# of optimal subfunctions on

;a per subfunction basis

(setf numgood (1+ numgood)))))

;count total number of optimal subfunctions

(setf sumfitness (+ sumfitness total_fitness))

;keep track of the total sum fitness

(if (> total_fitness (nth 0 maxfitness))

;keep track of max fitness in population

(progn

(setf (nth 0 maxfitness) total_fitness)

45

=

E

(setf (nth i maxfitness) pop_member)

))

(if (< total_fitness minfitness)

(setf minfitness total_fitness))

;keep track of min fitness in population

(if (> good_count max_numgood)

";keep track of max# of optimal subfunctions

;in single population member

(serf max_numgood good_count)))

;=== = =====KESET_STAT_INFO ====== =====

(defun RESET_STAT_INFG () ;resets all statistical counters

(serf vertnum_spot (make-array num_subfunctions))

(serf maxfitness (make-list 2))

(serf (nth 0 maxfitness) O) ;maximum fitmess in the population

(serf (nth I maxfitness) I)

(serf minfitness subf_pos_max)

(serf minfitness (eval (push '+ minfitness)))

;minimum fitness in the population

(serf sumfitness O) ;total fitness of population

(serf numgood O) ;total number of optimal optimal subfunctions

;in population

(serf max_numgood 0) ;max optimal subfunctions in a single chromosome

(array-initialize vertnum_spot 0))

;number of optimal subfunctions in each

;subfunction position

;....... == = STATISTICS===== = =

;prints out population statistics to file and screen each generation

(defun STATISTICS ()

(format t "'_'Xrunning STATISTICS'_")

(serf avg_fitness (float (/ sumfitness popsize)))

;calc average fitness

(format screen_file "Generation# "A'_" loopvar)

;print out various statistics

(format screen&file "Popsize = "A'_" popsize)

(format screen_file "Minfitness m "A'_" minfitness)

(format screen&file "Maxfitness m "A'_" (nth 0 maxfitness))

(format screen&file "Average fitness = "A'Z" avg_fitness)

(format screen&file "Maximum number of optimal subfunctions = "A-_"

max_numgood)

(format screen_file "Total number of optimal subfunctions = "A-_"

numgood)

(format screen&file "Average number of optimal subfunctions = "A-_"

(float (/ numgood popsize)))

(format data "'A" loopvar)

(format data " "A "A "A "_" popsize (nth 0 maxfitness) avg_fitness)

(do ((i 0 (i+ i))) ;prints out information per subfunctional

46

. l

L .

((>= i num_subfunctions))

(format screenafile

"Total and Average Number of optimal subfunctions in position "A = "A and "A-X"

(i+ i) (aref vertnum_spot i)

(/ (float (aref vertnum_spot i)) popsize)))

(format screen_file "'_Best solution so far ='A'Z"

(FILL_NIL_POSITIONS

(EXTRACT (GET_CHROMOSOME newpop (nth I maxfitness)))))

(format screen&file "Fitness = "A'_" (nth 0 maxfitness)))

,- === SETUP_SUBFUNC_MAX====

;this function sets up a list that has the maximum value each subfunction

;in that position can obtain (scale factor applied)

(defun SETUP_SUBFUNC_MAX (_aux ret_list subf_max subf_info

scale_factor table_specifier subfunct_table)

(setf ret_list '()) ;initialize return list

(do ((i 0 (1+ i))) ;run through all the subfunctions

((>= i (list-length bit_spec)))

(serf subf_max O) ;set max to lowest possible val

(serf subf_info (nth i bit_spec))

;get subfunction specifier

(serf scale_factor (bit_cluster-scale_factor subf_info))

;get scale factor from list

(serf table_specifier (bit_cluster-table_specifier subf_info))

;get lookup table specifier off list

(serf subfunct_table (nth table_specifier lookup_table))

;access the single lookup table

(do ((j 0 (1+ j))) ;go through entire lookup table

((>= j (list-length subfunct_table)))

;and find the highest value in the table

(if (> (nth 1 (nth j subfunct_table)) subf_max)

(serf subf_max (nth I (nth j subfunct_table)))))

(push (_ scale_factor subf_max) ret_list))

;put it on the list

(reverse ret_list)) ;set returned lists to proper order

w

47

